
Dynamic Economic Dispatch Dengan Integrasi Photovoltaic (PV) Menggunakan Metode Quadratic Programming
Pengarang : Jumathir Bin Anwar - Personal Name;
Perpustakaan UBT : Universitas Borneo Tarakan., 2025XML Detail Export Citation
Abstract
Dynamic Economic Dispatch (DED) merupakan suatu pendekatan optimasi dalam penjadwalan pembangkitan listrik yang bertujuan untuk meminimalkan biaya bahan bakar sambil tetap memenuhi kebutuhan beban dan batasan operasional pembangkit. Penelitian ini mengevaluasi pemanfaatan metode Quadratic Programming (QP) dalam menyelesaikan permasalahan DED yang disertai integrasi pembangkit tenaga surya Photovoltaic (PV). Simulasi dilakukan selama 24 jam pada sistem IEEE 30 Bus dan sistem transmisi Jawa-Bali 500 kV dengan skenario penetrasi PV sebesar 0%, 10%, 20%, dan 30%. Pada sistem IEEE 30 Bus, penetrasi PV sebesar 30% menghasilkan penurunan total daya pembangkitan konvensional sebesar 394,88 MW (~6,6%), penghematan biaya sebesar $1.207,43 (~7,6%), serta pengurangan emisi sebesar 482,32 kg (~6,1%) dibandingkan dengan kondisi tanpa PV. Sementara itu, pada sistem Jawa-Bali 500 kV, penetrasi PV 30% menghasilkan pengurangan daya sebesar 44.469,4 MW (~5,7%), penurunan biaya operasional sebesar Rp. 61.294,77 juta (~3,4%), dan penurunan emisi sebesar 40.183,55 kg (~5,2%). Hasil penelitian ini mengindikasikan bahwa integrasi PV dalam skema DED dapat meningkatkan efisiensi biaya dan mengurangi emisi, meskipun masih diperlukan penyempurnaan model agar karakteristik variabel energi terbarukan dapat terakomodasi secara lebih optimal dalam proses optimasi.
Dynamic Economic Dispatch (DED) is an optimization approach in power generation scheduling that aims to minimize fuel costs while meeting load requirements and plant operational constraints. This study evaluated the utilization of the Quadratic Programming (QP) method in solving DED problems accompanied by integrating solar Photovoltaic (PV) power plants. Simulations were conducted 24 hours on the IEEE 30 Bus system and the Java-Bali 500 kV transmission system with PV penetration scenarios of 0%, 10%, 20%, and 30%. In the IEEE 30 Bus system, 30% PV penetration resulted in a decrease in total conventional generation power of 394.88 MW (-6.6%), cost savings of $1,207.43 (~7.6%), and emission reduction of 482.32 kg (~6.1%) compared to the condition without PV. Meanwhile, in the Java-Bali 500 kV system, 30% PV penetration resulted in a power reduction of 44,469.4 MW (-5.7%), a decrease in operating costs of Rp. 61,294.77 million (~3.4%), and a decrease in emissions of 40,183.55 kg (-5.2%). The results of this study indicate that the integration of PV in the DED scheme can improve cost efficiency and reduce emissions. However, there is still a need to improve the model so that the characteristics of renewable energy variables can be accommodated more optimally in the optimization process.